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Abstract

Since its inception, Strategy has been and, into the foreseeable future, will continue
to be a field dominated by empirical studies. Even its theoretical development relies
primarily upon inductive versus deductive methods. Interestingly, the 2024 Strategy
Summit comes at the same moment we are seeing a crisis in replicability across the
social sciences. It is therefore crucial, as we cast our gaze toward the future of the field
and map out our overarching research priorities, that we give careful thought to extend-
ing and refining our norms for empirical methods and reporting. This paper highlights
the major advances in causal identification methods that began in Computer Science
roughly three decades ago. Presently going under the “Structural Causal Modeling”
(SCM) moniker, these methods provide a rich foundation for the design, evaluation,
and interpretation of empirical work aiming to estimate the causal effects of certain
variables of interest (“treatments”) on others (“outcomes”). This essentially covers all
studies in Strategy. Very recently, a trickle of papers calling attention to these meth-
ods have seen publication in leading Management journals. The purpose of this short
discussion is to highlight some of the subtleties of empirical analysis when the data is
generated by complex causal systems. We close with a call to action to promote the
use of SCM methods as a standard part of the Strategy research toolkit.
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Status quo: elementary causal thinking

Casual empiricism leads to the observation – in our judgment, without controversy – that

the lion’s share of quantitative analysis in the field of Strategy (and Management more

generally) takes a standard, ordinary least squares (OLS) approach to studying phenomena

of interest. By this, we mean empirical designs that have in mind estimating the causal effect

of one or more treatment variables upon an outcome variable using standard OLS regression

techniques.

To take an arbitrary, well-cited (2,573, Google Scholar) example, Zott and Amit (2007)

propose the following hypothesis: “The more novelty-centered an entrepreneurial firm’s busi-

ness model design, the higher the firm’s performance.” Like most hypotheses in Strategy,

this is a causal conjecture. We would describe this conjecture as “elementary” in the sense

that the causal theory presented is simply, n → π, where n is some measure of novelty and

π is some measure of firm performance. In this case, imagine a novelty variable in indicator

form (n = 1 for novel business model and zero otherwise; in the actual study n is continuous).

Then, in an ideal world, the causal effect of n on π could be determined using a randomized

experiment: find a large population of firms with similar features operating under similar

circumstances; randomly assign half to adopt a novel business model and half a conventional

business model; then, measure the differences in performance between the two groups.

As readers will be quick to point out, random assignment of business models to real firms

is rarely a feasible option. However, if the differences in features and settings between firms

that adopt novel business models and those that do not are, on average, zero, then the causal

effect of n on π can be accurately estimated by running a regression according to the model

in familiar OLS form:

πi = α + βnni + ei. (1)

Under these conditions (no average feature differences across novel versus conventional busi-

ness models, large sample, indicator n), βn is an accurate estimate of the effect of n on
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π.

Readers will again be quick to point out that, true though this may be, the assumption

that features across the two business model adoption categories are almost certainly not the

same on average. As Zott and Amit (2007) point out, for example, the level of competitive

intensity in a firm’s industry will tend to reduce performance – regardless of the business

model adopted. If differences in competitive intensity averaged out between the two groups,

this would not be a problem. But suppose this is not the case, i.e., suppose there are

differences in competitive intensity between the adopters of novel business models versus

those who adopt conventional models. For example, firms in competitive industries may be

more likely to adopt novel business models precisely to increase their added value and, as a

result, increase profit.

This is an example of the well-known issue of selection bias. As described, competitive

intensity is a common cause that influences both the treatment and outcome variables.

Therefore, the analysis calls for the inclusion of a control variable that measures competitive

intensity. Keeping the example simple, the analyst could introduce another indicator variable

for competition, c, where c = 1 when competition is strong and zero when it is weak. Doing

so breaks the sample into two groups according to whether a firm is in a strongly vs weakly

competitive industry. Running the expanded regression

πi = α + βnni + βcci + ei, (2)

results in a comparison of the within-the-same-competitive-categories treatment effect (n on

π), with βn representing the observation-weighted average effect across the two categories

(strong vs weak competition). If the differences of all other features of the firms in the

novel versus conventional business model are, on average, zero, then βn will be an unbiased

(accurate) estimate of the expected treatment effect for the population as a whole. Moreover,

conditioning on ci provides the expected effects within each competitive category. By not

controlling for industry competitiveness, OLS Model (1) results in a biased estimate of βn.

This is known as omitted variable bias (OVB).

We close this section with several concluding points. First, the norm for our discipline is to
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state an elementary causal hypothesis verbally and then test it empirically, typically (though

not always) using a standard OLS design. Second, whether implicitly or explicitly stated, the

goal is to create apples-to-apples (or, ceteris paribus) comparisons of direct treatment effects

by controlling for those features which are correlated with meaningful differences across the

treatment subpopulations. In other words, the idea is to mimic, as closely as possible, a

randomized experiment by placing firms (or whatever agents of study) into categories such

that the only within-category differences that remain are random, mean zero. This leads

to a dominant emphasis in Strategy studies on including control variables in order to avoid

OVB. Today’s norm is to think of control variables as refinements to the estimation process,

motivated by the idea that greater refinement leads to more accurate estimation by reducing

the possibility of selection bias.

The new frontier: SCMs

Important findings in the young but burgeoning field of structural causal modeling (SCM),

which has been developing for roughly the past three decades in computer science, have begun

to make inroads into the social sciences. The literature on SCMs provides a rigorous and

transparent foundation for the design and interpretation of empirical studies. SCMs, which

can be thought of as nonparametric versions of structural equation models (Pearl, 2009, p.

30), have generated a rich body of theory with respect to conducting empirical analyses in

the context of data generated by causal systems. For interested readers, additional texts in

SCM methods include Pearl (2014, 2009, 2020), Spirtes et al. (2001), Ryall and Bramson

(2013), and Morgan and Winship (2007). Recent papers that introduce these methods into

Management include Lee and Bettis (2023, on causal mediation) and Frake et al. (2024, on

collider bias).

The central tool at the heart of the SCM approach is the directed acyclic graph (DAG).

A DAG summarizes the causal relationships between variables of interest in the system

under study. The nodes of the graph represent the variables in the system – such as the

type of business model adopted by a firm, whether the firm’s industry is competitive or
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not, and so on. Directed arcs between the nodes indicate direct causal influences. In these

models, “influence” is taken to mean that the actual values taken by a variable’s parents

(e.g., the business model is “innovative”) determines the probability distribution on its own

values (e.g., the probability that the firm’s actual performance is “high”). DAGs provide a

compact, intuitive and very flexible tool for elaborating the causal structure of interest.

In our simple example adapted from Zott and Amit (2007), the DAG representing the

data-generating system would be:

n

c

π

Uc

Un Uπ

Figure 1: A simple DAG adapted from the business model study

This diagram highlights, in a nice qualitative form, the causal relations between the variables.

It also highlights the need to control for industry competitiveness: competitiveness is a

confounder – it simultaneously influences the choice of business model and firm performance.

This effect must be controlled for to obtain an unbiased estimate of the direct influence

of business model choice on firm performance. The remaining nodes represent unobserved

factors. These are illustrated with empty nodes and dashed lines. As depicted, this illustrates

a setting in which the only unobserved factors are those that cause independent random

variation in the observed variables.

A DAG becomes a SCM when the stochastic relationships implied by the directed arcs

are quantified. Using the language of randomized experiments, DAGs classify variables into

six types: pre-treatment, treatment, confounder, collider, mediator, and outcome. In Figure

1, the Uis are unobserved pretreatment variables, n is the treatment, c is a confounder, and

π is the outcome.

Of course, causal systems in the real world are much more elaborate than the simple
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version shown in Figure 1.1 The complexity of the real world – especially in business strategy

contexts – means that rarely, if ever, is the causal story as simple as, “A direct influence

relation between treatment and outcome exists, potentially confounded by features that can

be controlled for by including them as independent variables.” This complexity leads to a

number of subtle issues when designing empirical studies aimed at estimating causal effects.

These issues present both dangers and opportunities for the introduction and correction,

respectively, of biases in the estimation of causal effects (see the excellent discussion in

Cinelli et al., 2022). For example, as we show below, bias can also be introduced by the

inclusion of variables meeting certain structural conditions in a DAG.

Thus, a single-minded focus on OVB may well lead to the introduction of “bad controls,”

resulting in bias that could have been avoided had the variables simply been excluded. The

notion that increasing the number of controls induces an increasingly refined estimate of

the causal effect of interest is not correct. Moreover, while some variables can be added

with with a neutral effect on estimation, good empirical design dictates they be skipped to

save the cost of collecting them and to avoid the reduced degrees of freedom associated with

adding more independent variables to the analysis.

At the same time, a correct understanding of the causal structure that underlies the

data can also lead to insightful approaches to eliminating OVB. It is not always necessary

to resort to advanced identification methods, such as instrumental variables, diff-in-diff, or

discontinuity analyses to resolve problematic situations. Moreover, working through one’s

causal theory, à la the SCM approach provides insight into how these more advanced methods

work and when they are actually called for.

The OVB problem is well understood. Therefore, let us turn toward some illustrative

examples of the kinds of novel insights that arise when SCM methodologies are adopted.

In these examples, we simply assert certain results without elaborating the technical details

behind them (which are fully discussed in the works cited above). Our goal here is to

advocate for the adoption of these methods by pointing out some interesting insights that,

without them, would be missed in a standard OLS approach.

1Including the actual setting described by Zott and Amit (2007).
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Subtleties highlighted by SCMs

Unobserved but neutral(ized) confounder Consider the previous example but with

the following twist: the effect of business model type on performance is mediated by the

spirit of the firm’s employees. The causal story is that once senior leadership decides upon

a business model (novel vs conventional), they then select employees whose mix (m) of

personality profiles fits that model best. These employees then do the work and, in so

doing, directly influence the firm’s performance. Furthermore, assume that the industry

competitiveness is not easily measurable. The following diagram summarizes this causal

story (with noise variables removed to reduce clutter):

n

c

πm

Figure 2: Using m to neutralize the OVB due to c

Here, we see that c is an unobserved common cause of n and π. Immediately, the OVB

alarm bells begin to ring. Perhaps surprisingly, the OVB problem induced by confounder

c can be neutralized without actually measuring c. In this situation, a two-stage OLS

regression will create an unbiased estimate of the effect of n on π: Stage I: regress m on n;

Stage II: using the Stage I estimates, regress π on m.

Additionally, in both of the following situations, controlling for m neutralizes the OVB

due to c as well:

n

c

π

m

(a) m controls for c OVB

n

c

π

m

(b) m controls for c OVB

Figure 3: Two situations where controlling for m neutralizes the OVB due to c

What are the causal stories here? In Figure 3a, we might imagine that competitive intensity

influences the available mix of job candidates in the general population and, hence, in the
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company. Then, the mix of personality profiles in the company may affect the choice of

business model. On the other hand, Figure 3b, could represent a similar situation only un-

der which the mix of personality profiles in the company directly affect performance rather

than choice of business model. The point is that, even without the ability to measure indus-

try competitiveness directly and even without advanced identification methods, including a

measurable variable m that is consistent with the causal story can solve the OVB problem.

Unfortunately, deciding how and when to use variables such as m to solve the OVB

problem is, itself, a challenge. For instance, the variable m in Figure 2 is a mediator, which

is a variable that is influenced by the treatment and subsequently influences the outcome.

Including m as a control variable in a regression analysis introduces overcontrol bias, because

controlling for a mediator blocks the very effect we want to estimate (see Lee and Bettis,

2023, for an application of SCMs for causal mediation in strategy research). Thus, m should

not be used as a control variable in Figure 2. The key to solving the OVB problem, as

mentioned earlier, is running a two-stage regression (an insight derived from the DAG).

“Controls” that introduce bias We put scare quotes around controls to indicate vari-

ables that, when included in a regression with the aim of eliminating OVB actually introduce

some other bias instead (and, hence, should not be included). Generally, these are referred

to as “bad controls.” Chief among these is the collider. Colliders are variables that are

caused by or share a common cause with both the outcome and the treatment. Including

such variables leads to collider bias.

Let us return to Zott and Amit (2007) who hypothesize (p. 188) that firm size is, “a

proxy for the focal firm’s bargaining power, relative to rival firms and other business model

stakeholders. All other things being equal, the larger the focal firm, the greater its potential

for value creation as well as its bargaining power, and, hence, the better its performance.”

Firm size was measured as the logarithm of the number of employees. The potential problem

is that the number of employees could be an outcome of business model novelty and perfor-

mance. This would be the case if firms adjust hiring policies to fit business model types and

if better performance enables firms to hire employees by exercising bargaining power vis-à-vis
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stakeholders. Figure 4 illustrates this setting, where e is the employee variable (intuitively,

we see why e is referred to as a “collider”).

n

e

π

Figure 4: Collider bias

Another example of a collider situation would be one that includes winning the Boston

Consulting Group’s award of most innovative companies (https://www.bcg.com/publications/most-

innovative-companies-historical-rankings), where business model innovation is one of the

award criteria. Both novelty and performance likely affect a firm’s probability of winning

the innovation award.

The problem is that conditioning, controlling, selecting, or stratifying on a collider vari-

able distorts the relationship between its parent variables (Cinelli et al., 2022; Elwert and

Winship, 2014; Griffith et al., 2020; Schneider, 2020). For instance, when examining the

effect of corporate social responsibility (CSR) on a firm’s financial performance, collider bias

occurs when a firm’s inclusion in Forbes’ Most Admired Companies list is specified as a

control variable. This is a bad control because both CSR and financial performance likely

affect a firm’s probability of being included on the list. Controlling for the probability of

inclusion on the list, which is a collider caused by both the outcome and the treatment,

creates a spurious correlation between CSR and financial performance.

A literature review by Frake et al. (2024) shows that papers published in leading strat-

egy and management journals discuss collider bias at roughly half the rate of top economics

papers, and four times less than those in leading sociology journals. Collider bias mani-

fests not only as a problematic control in standard OLS studies, but also intersects with

many research design problems, including matching, fixed-effect analysis, selection on the

dependent variable, selection into archival dataset, sample exclusion criteria, attrition, and

non-response.

Summing up, the “more controls = greater accuracy” mindset is one that continues to

be dominant in our field. Yet, informed by the now extensive body of work in the SCM
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literature, a small but growing number of papers have begun to highlight the problems with

this mindset in the context of research in business strategy. Properly designed studies can

find ways around variables that are impossible to measure (e.g., Figure 2). At the same

time, there is such a thing as a bad control. Using colliders as controls is a problem as is the

unsophisticated use of mediators. Even studies that incorporate sophisticated identification

techniques must be aware of these issues.

Conclusion: a call to action

Apparently, there is no getting around beginning one’s empirical study with a causal theory

– at best summarized in the form of a DAG. Without such a theory, the empirical analyst

cannot make informed decisions with respect to his or her research design. The researcher

must posit a theory (or theories) up front and proceed to conduct the analysis accordingly.

Without seeing such a theory, it is impossible to know what, exactly, the authors think their

study is accomplishing.

SCMs are particularly helpful in observational studies, when actual experiments cannot

be conducted. Developing a causal theory in DAG form as part of an empirical analysis

accomplishes several objectives. First, it communicates the theory in a single, easy to under-

stand diagram. Second, in doing so, it permits readers to decide for themselves the extent

to which that theory is compelling (or even believable). Third, and most importantly, it

provides justification for the design of the empirical analysis – including which variables

were included, which were excluded, and whether multi-stage regressions were conducted as

remedial steps taken to deal with OVB problems. In addition, the DAG implies a minimal

set of variables that must be controlled for to obtain an unbiased estimate. As Hünermund

and Louw (2023) demonstrate, it is not necessary to include all causal influence factors of

the outcome variable in a regression. In many cases it may be easier to control the treat-

ment assignment mechanism than attempt to include a long list of variables that affect the

outcome.

Knowing the effect of including a particular variable as a control is helpful when com-
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paring one’s work against a prior study or must respond to a request by a reviewer once the

paper is under submission. Furthermore, SCM methods help researchers assess the robust-

ness of their findings in the presence of unobserved confounders (see Lee and Bettis, 2023,

for a discussion about sensitivity tests). Cinelli and Hazlett (2019) discuss how to conduct

sensitivity analyses for quantifying the necessary strength of a hypothetical unobserved con-

founder that could nullify the findings. If there is no suitable data in which all necessary

and sufficient control variables are observed, SCMs can be used to improve research de-

sign by screening instrumental variables, assessing collider bias in fixed-effects models, and

evaluating collider bias in matching variables.

Finally, it is worth noting that the SCM community has developed several statistical

tests to assess goodness of fit of the data to the causal theory (i.e., the DAG, which may

include nodes for omitted variables). Even without employing sophisticated identification

techniques, such as instrumental variables, discontinuity designs, diff-in-diff designs, and so

on, the SCM approach provides fertile ground for the testing of causal theories and estimation

of causal effects. Moreover, these techniques are intuitive and accessible by a broad set of

scholars.

In closing, it must be pointed out that every empirical researcher is, by the very nature

of their work, a causal theorist – the only question is whether that theory has been explicitly

examined. Creating a norm in which causal theories are discussed and elaborated using

the SCM standards now prevalent in computer science would impose a crucial level of self-

reflection during the research stage. It would also lead to better studies with more robust

findings. Indeed, we conjecture that it may even contribute to resolving the present crisis in

the replicability of findings in social science.
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