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Authors’ note: 

We would like to submit this paper to join the conversation on “What should strategic management’s 

dependent variable be?”. To answer this question, we develop a theory about how time-specific causal 

knowledge augments the firm’s strategic decision-making, in a setting where new technologies change the 

way firms are organized as digital platforms and compete with tacit knowledge. Many of the platform 

offerings are deployments of AI tools such as recommender systems. The recommender systems cause us 

to re-evaluate existing theories on the limits of firm growth. As advocated by researchers of recommender 

systems Joachims et al. (2021), the next generation of recommender and decision-support systems should 

be viewed as policies that decide what interventions to make in order to optimize a desired outcome. 

These policies and their associated managerial interventions are central to the firm’s strategic decision-

making. In this paper, we connect the AI literature from the field of computer science to the field of 

strategic management with an objective of re-evaluating fundamental strategy research on the scale, 

scope, and boundary of the firm. 
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The Limits of AI-based Growth: 

The Scale, Scope and Boundary of Digital Platforms 

 

ABSTRACT 

Tacit knowledge is a key construct in existing strategy theories that juxtapose knowledge transfer and 

competitive imitation as blades of the same scissor. Low tacitness enables, on the one hand, the transfer of 

knowledge inside the firm, but, on the other hand, the leakage of knowledge outside the firm. As an 

example, the firm’s proprietary knowledge is the causal effect of how users of the firm’s 

products/services respond to the recommendations made by artificial intelligence (AI), a system of 

statistical inference derived from collected data. If the knowledge is more explainable and therefore less 

tacit, when is it less easily transferred outside the firm? We answer this question by re-evaluating the 

paradox of tacit knowledge, as “Principles of Explainable AI” demand explanations for the reasons 

behind AI predictions/recommendations. Our re-evaluation has implications for theories on firm growth 

and factors that limit the scale, scope and boundary of digital platforms. 
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INTRODUCTION 

Theories on the limits of firm growth posit that a firm’s rate of growth is limited by the rate at which the 

firm’s management is capable of rendering services from productive resources that are unused (Penrose, 

1959) and the sharing and transfer of the knowledge of individuals and groups within the firm (Kogut and 

Zander, 1992). A key assumption that both theories have in common is that some managerial capabilities 

and knowledge are inherently tacit (Polanyi, 1966; Nelson and Winter, 1982). Tacitness constrains the 

transfer of knowledge and capabilities across organizational units, market segments and industry sectors. 

Viewed through these theories, a firm’s rate of growth is limited by the rate at which capabilities and 

knowledge can be transferred for deployment inside the firm. Why tacit managerial capabilities and 

knowledge are more easily transferred inside the firm but difficult to imitate outside the firm is a central 

research question and a paradox. 

The paradox of tacitness is particularly salient when humans use the predictions generated by 

artificial intelligence (AI) as inputs to make and support decisions that are consequential for everyday 

life: decisions about what to consume, believe and do. We refer to AI as a system of statistical inference, 

using machine learning (ML) techniques to find patterns or to identify key variables in data with the 

purpose of making predictions and taking actions by changing some of those variables. The predictions 

generated by ML are made not by human-legible rules, but by less scrutable statistical techniques. As an 

example, a credit-scoring ML algorithm may predict a high probability of an applicant defaulting on a 

loan. Yet, the loan applicant cannot easily understand whether there were errors in the data that ML used 

about her, whether there are biases in the historic loan payment data such that algorithms are trained to 

perpetuate some demographic groups receiving fewer loans compared to others, or what she can do to 

increase her chance of loan approval in the future. 

While the opacity of predictive models keeps a firm’s intellectual property hidden, it can have 

(and has had) severe consequences that deeply impact firm performance and human lives (Rudin, 2019). 

Recent changes in the institutional environment have sought to make AI more transparent and 

explainable. For example, under the European Union’s General Data Protection Regulation (GDPR), 
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which is the most important change in data privacy regulation in the last 20 years, automated decisions 

with legal implications—such as who qualifies for a loan, insurance coverage, or a job—should be 

transparent and explainable. As another example, the United States National Institute of Standards and 

Technology (Phillips et al., 2020) introduced Four Principles of Explainable Artificial Intelligence: (1) the 

system produces an explanation, (2) the explanation is meaningful to humans, (3) the explanation reflects 

the system’s processes accurately, and (4) the system expresses its knowledge limits. The Knowledge 

Limits Principle states that systems identify cases they were not designed or approved to operate, or their 

answers are not reliable. By identifying and declaring knowledge limits, this practice safeguards answers 

so that a judgment is not provided when it may be inappropriate to do so. 

However, what are the implications of such institutional change on competitive imitation when 

AI becomes more transparent and explainable? If the firm’s proprietary knowledge is more explainable 

and therefore less tacit, when is ML, which is a prediction technology, less easily transferred and imitated 

outside the firm? Our central thesis is that AI is more easily transferred inside the firm but difficult to 

imitate outside the firm when the knowledge about the system is causal and time specific, for a given 

level of explainability. Creating time-specific causal knowledge about AI requires not only computation 

and domain expertise in generating on-demand predictions, but also the firm as a community where the 

organizing of social relationships and interactions has persistence and regularity in creating such 

knowledge. 

We posit that the persistence and regularity of creating such knowledge results from the process 

of making predictions and designing interventions. The process involves strategic decision-making by 

management about whether and how to intervene in the system, such as nudging users to explore, taking 

action to prevent and correct prediction biases, and re-allocating decision authority from AI to humans. 

Having time-specific causal knowledge that augments the firm’s strategic decision-making is changing 

the way firms are organized and how they compete. Going back to the example of explaining to bank loan 

applicants why rejection was recommended by AI, the strategic decision-making by management takes 

the recommendations made by AI as an input. If managers can use the system of statistical inference to 
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augment the process of loan approval such that the decisions can be made fairly while reducing default 

rates, predictions can inform managerial interventions through the firm’s strategic decision-making. 

Our focus is on the firm’s strategic decision-making, whereas existing literature on AI has 

emphasized the functional aspects of management, featuring operations, marketing, talent acquisition, etc. 

(Allen and Choudhury, 2022; Choudhury, Starr, and Agarwal, 2020; Iansiti and Lakhani, 2020; Kellogg, 

Valentine, and Christin, 2020; Raj and Seamans, 2019; Tong, Jia, Luo, and Fang, 2021). Our focus on 

strategic decision-making, which is a core research area in the field of strategic management, pinpoints 

how AI is changing the way firms organize ecosystem value chains and compete as disruptive digital 

platforms. Many of the platform offerings are deployments of AI tools such as recommender systems. 

The recommender systems cause us to re-evaluate existing theories on the limits of firm growth. As 

advocated by researchers of recommender systems Joachims et al. (2021), the next generation of 

recommender and decision-support systems should be viewed as policies that decide what interventions to 

make in order to optimize a desired outcome. These policies and their associated managerial interventions 

are central to the firm’s strategic decision-making. 

Suppose the knowledge is a manager’s mental model about how users of the firm’s 

products/services respond to the recommendations made by AI. As an example of ML’s time specificity, 

consider how the video streaming platform Netflix wins “moments of truth” with its recommender 

system. Within a few seconds, the personalized recommendation of items has to keep a user engaged and 

prevent the user from switching to an alternative entertainment option, as reported by Netflix researchers 

(Gomez-Uribe and Hunt, 2015: 13.6). Personalized recommendation has time specificity because new 

items are added, the user picks up new interests, popularity of items trends temporarily, and the data that 

the system uses for recommendations change over time (Basilico and Raimond, 2017). The knowledge 

about recommendations’ effect on user response is specific to the time during which users interact with 

items. The importance of time has been reported by AI researchers at Netflix (Steck et al., 2021). The 

researchers reveal that adding time as contextual information to user-item interaction data—by 

incorporating raw, continuous timestamps indicating the time when the user played a video in the past, 
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along with the current time when making a prediction—is a key reason why Netflix’s deep learning 

algorithm has significant improvements in performance over other ML techniques. Using data of user-

item interactions, Netflix researchers build mathematical representations of users and items, predict each 

individual user’s interest in each item available at the time, and generate on-demand recommendations of 

next items that are personalized to the user based on time-specific causal knowledge about user response. 

The new technologies change the way the firm is organized and how it competes, as time-specific causal 

knowledge augments the firm’s strategic decision-making. 

The subsequent sections of our paper are organized as follows. First, we introduce the concept of 

time-specific tacitness of AI-based knowledge and explain how this new concept leads to a re-evaluation 

of existing strategy theories on the limits of firm growth. Specifically, we examine the relevance of the 

new concept to the growth of digital platforms, which are firms that have disrupted a wide variety of 

industries by creating new transactions for goods, services, and information across multiple sides of a 

market (e.g., consumers, producers, and advertisers). Then, we theorize how the time specificity of causal 

knowledge enhances our understanding about what factors limit the scale, scope, and boundary of digital 

platforms. Finally, we analyze in what ways theories of firm growth can be revised and revitalized with 

the concept of time-specific tacitness of AI-based knowledge. 

TIME-SPECIFIC TACITNESS OF AI-BASED KNOWLEDGE 

The paradox of tacit knowledge: A challenge to the development and deployment of AI 

Tacit knowledge, Michael Polanyi’s (1966) well-known idea stating that individuals appear to know more 

than they can explain, is a key construct in existing strategy theories that juxtapose knowledge transfer 

and competitive imitation as blades of the same scissor, a paradox raised by Winter (1987). Polanyi 

argued that expertise, or a high degree of skills, is a precondition for articulate knowledge in general, and 

scientific knowledge in particular. An important part of expertise is tacit. Philosopher Hubert Dreyfus 

argued that an important part of the expert knowledge is tacit and therefore cannot be articulated and 

incorporated in a computer program. Hubert and Stuart Dreyfus’s (1986) model of skill acquisition in the 
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development of expert systems posits that systems that enable a computer to simulate expert performance 

(for example medical diagnostics) are not able to capture the skills of an expert performer. 

Extending Polanyi’s idea, a theory of organizational knowledge, as advanced by Kogut and 

Zander (1992), examines when efforts by a firm to grow by the replication of its technology may 

inadvertently elevate the probability of imitation by competitors. The theory maintains that technology is 

less easily transmitted and replicated outside the firm, because no organizing principles exist to efficiently 

transfer and redeploy tacit knowledge. By contrast, inside the firm, the firm provides a social community 

in which individual and social expertise is transformed into economically useful products and services. 

Coded knowledge is alienable from the individual who wrote the code, although the firm may codify 

knowledge, to a certain extent, into a set of identifiable rules and procedures. The persistence and 

regularity in the organizing of social relationships and interactions is why tacit knowledge is more easily 

transferred inside the firm. 

Tacit knowledge poses a challenge to the inter-disciplinary literature on AI governance that 

studies the ethical, legal and technical challenges in the development and deployment of AI. The AI 

workforce appears to know more than they can explain. Humans are involved in the ML training and 

testing process, but ML does not need the categorizations of our world as prescribed by humans to infer 

the underlying decision rules from historical data based on statistical analysis. However, quite different 

from Polanyi’s well-known idea, here knowledge is tacit in the sense that the AI workforce built a system 

to imitate/simulate expert performance but can see only the system’s output. The AI workforce cannot 

easily explain to users why a specific item or diagnosis was recommended, especially when deep neural 

networks employ hidden weights and activations that are generally noninterpretable, thus limiting 

explainability. 

As an example, a tumor-detection system can diagnose more accurately than radiologists 

regarding the likelihood of cancer being present, as reported by McKinney et al. (2020). However, the AI 

workforce cannot explain the inferred decision rules because they cannot be directly observed or 

manipulated. The statistical inference is made with black box models and sophisticated algorithms for 
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deep learning. For instance, artificial neural networks store models as weights that do not have any 

correspondence to real-life objects. Moreover, the system’s expertise is limited to a narrow, specific 

domain. For instance, the tumor-detection system cannot have a hunch about a peculiar shape of a tumor. 

A peculiar shape reflects some extenuating circumstances of the patient, so it is outside the space of the 

data the system was trained on. The system may detect a pattern in image pixels, but it will not be able to 

work reliably in unfamiliar situations. ML is fundamentally a form of context-dependent statistical 

inference and therefore its application is limited to a narrow, specific domain. 

Given the limits of ML and the AI workforce, the crucial question is whether the firm’s 

management can explain the reasons behind the predictions or recommendations made by AI: How is the 

system developed and deployed? In which domain of application? To what ends? With what benefits, and 

to whom? And with what risks? The firm’s management faces pressures from the board of directors, 

shareholders, and regulators when the use of AI is seen as biased against certain groups. The 

management’s explanations are important in designing interventions for preventing and correcting biases 

in predictions. For example, Amazon discontinued an AI recruiting tool because the system taught itself 

that male candidates were preferable (Dastin, 2018). Yet, as argued by Cowgill and Tucker (2019), 

algorithm users (principal) and algorithm developers (agent) have asymmetric ability to evade 

responsibility for mistakes, so if self-serving interests lead to the avoidance of responsibility, then AI 

applications cannot be trusted. 

Time specificity of causal knowledge in digital platforms 

GDPR regulations on data collection and storage, the protection of data security, and the concerns about 

privacy and transparency have led the AI workforce to take advantage of the temporal features of the data 

in session-based recommender systems. The temporal dynamics and sequential patterns in user attention 

and item evolution within a current session of user-item interactions are modeled with deep neural 

networks (see Zhang et al., 2019 for a review). Although the importance of time and temporal dynamics is 

disclosed through academic publications, competitors cannot easily reproduce the time-specific causal 
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knowledge, even if some of the firm’s prediction technology is copied or reverse-engineered by 

competitive imitation. The creation of such knowledge results from the firm’s intricate process of making 

predictions and designing interventions, which is deeply rooted in the firm as a social community and 

therefore not easily transferred by competitive imitation. Yet, the system can be explained by diagnosing 

the causal effect of personalized recommendations on user response such as satisfaction, addictive 

behaviors, probability of subscription cancellations, and complaints about unfair treatments. 

We submit that strategy theories on the limits of firm growth need to be revised and revitalized by 

incorporating time specificity of causal knowledge. In proposing the revision and revitalization, we focus 

on digital platforms and their use of recommender systems. Recommender systems are one of the most 

successful applications of artificial intelligence (Jannach et al., 2019, 2021; Quandrana et al., 2018; Zhang 

et al., 2019). Matching users and items with a recommender system, a digital platform increases item 

availability on one side, attracts a large user base on another side, and monetizes from the knowledge 

about user response to personalized recommendations and experiences. Platforms, as Kenney, Bearson, 

and Zysman (2019) argued, “are an emblem and embodiment of the digital era just as factories were of 

the industrial revolution.” 

We are particularly interested in digital platforms because their growth is reshaping the playing 

field upon which competition and entrepreneurship take place. The growth of digital platforms is 

increasingly subject to regulatory scrutiny. Anti-trust violations, AI bias and algorithmic harm have 

alerted public authorities and standards bodies (Cutolo and Kenney, 2021). The regulations are intended 

to ensure a “fair, transparent and predictable business environment for smaller businesses and traders on 

online platforms” (European Commission, 2018, 2019). For instance, the EU regulation requires that 

platforms provide an account of the main factors used in their online ranking systems. Yet, disclosing an 

ML model would be revealing a trade secret (Rudin, 2019). Therefore, the revision to strategy theories 

that we propose focuses on incorporating time specificity of causal knowledge in the theories under a 

changing institutional environment where explainable AI has implications for competitive imitation. 
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As we incorporate time specificity of causal knowledge in strategy theories on the limits of firm 

growth, we connect how a digital platform generates knowledge to how the platform monetizes from the 

knowledge. The monetization could be fees for accessing and transacting on the platform (e.g., users pay 

subscription fees, app developers pay commissions, campaign sponsors pay advertisement and marketing 

service fees). The revision that we propose focuses on the rate at which the platform’s management is 

capable of growing user engagement by making predictions and designing interventions about the 

probability of a user responding to on-demand personalized recommendations. 

Another way to monetize from the knowledge could be fees from providing AI as a service that 

helps clients understand how users of the clients’ products/services respond to personalized 

recommendations and experiences. Providing AI as a service faces similar challenges as the transfer of 

tacit knowledge when the transfer occurs outside the firm. Monetizing from providing AI as a service, 

however, invokes a conflict of responsibility between the clients who are held responsible for the quality 

of predictions and the service provider who is not. In her critique of black box ML models for high stakes 

decisions, Rudin (2019) argued “the fact that the model was complicated and proprietary allowed the 

company to profit from it.” We focus our analysis on the time specificity of causal knowledge, not the 

transaction between AI-as-a-service provider and clients, so the theoretical revision is parsimonious. 

Monetization could also be revenue from fulfilling a user’s request through the platform’s 

integration of personalized recommendations with distribution and delivery of a physical item. However, 

monetization that requires integration with non-scale-free assets for physical distribution and delivery 

faces capacity constraints of logistics and operations, in addition to the time specificity of user response to 

personalized recommendations and experiences. We focus our analysis on time specificity as the limiting 

factor, not the capacity constraints of logistics and operations, so the theoretical revision is parsimonious. 

In revising and revitalizing strategy theories on the limits of firm growth, we focus on how the 

time specificity of causal knowledge enhances our understanding about what factors limit the scale, 

scope, and boundary of the firm. The temporal aspect that we emphasize acknowledges a key observation 

we make about digital platforms. That is, users interact with items online, including the items that were 
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posted/generated by other users in earlier time period. The contemporaneous interaction in real time 

means that a digital platform’s rate of growth has a tempo completely different from a traditional firm’s 

rate of growth, which is the change in firm size typically measured in assets or headcount. The online 

contemporaneous interaction also means that the knowledge gained from offline experiments may not 

apply. AI researchers at Netflix (Steck et al., 2021) reported that the performance improvement that is 

observed offline using historical data would sometimes disappear or, in rare cases, result in worse 

performance when the recommendations are presented to users in an A/B-test online. This suggests that 

correlates of performance are not causes of performance. 

The causal aspect that we emphasize highlights another key observation we make about digital 

platforms. That is, users are subjects of the platform for data collection and experimental studies. 

Platforms collect data about users and how they interact with items. Platforms conduct experiments to 

study how users respond to personalized recommendations. Platforms train the ML algorithms with the 

data they collect and revise the algorithms based on the results of the experimental studies. 

Strategic decision-making with time-specific causal knowledge 

Data-augmented decision-making tools have changed the way managers make decisions. They now rely 

more on data and less on intuition (Brynjolfsson and McElheran, 2016). These tools enable managers to 

expand the search space of existing knowledge (Wu et al., 2020). However, causal knowledge is required 

to answer “what-if” questions in decision making. Causal knowledge is a mental model that link actions 

to consequences.1 Yet, ML cannot foresee future consequences as humans can (Balasubramanian et al., 

2020). Humans exercise judgment in assessing causal effects about where, how and why something 

happened. The causal knowledge that humans derive is used to generate and evaluate alternatives for 

decision making. The implication for the firm is that there has to be a good understanding of and 

 
1 The idea that managers operate on the basis of inaccurate information is one of the hallmarks of bounded 
rationality; according to Simon (1997: 17), “bounded rationality [...] assumes that the decision maker [...] has 
egregiously incomplete and inaccurate knowledge about the consequences of actions.” 
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explanation for where the data come from, what has influenced the data, and the causal relation between 

input and output data (Asatiani et al., 2020: 270). 

We add to the importance of causal knowledge by highlighting the need to make accurate 

predictions in a dynamic environment where the temporal aspect connects predictions to decisions. Most 

commonly used ML algorithms, including decision trees, support vector machines, and deep learning, 

rely on correlations between inputs and outputs and are able to make accurate predictions only in a static 

environment. The algorithms do not generate causal knowledge. As AI pioneer Judea Pearl (2019) 

argued, “The dramatic success in machine learning has led to ... increasing expectations for autonomous 

systems that exhibit human-level intelligence. These expectations have, however, met with fundamental 

obstacles that cut across many application areas. Machine learning researchers have noted current systems 

lack the ability to recognize or react to new circumstances they have not been specifically programmed or 

trained for.” 

In a dynamic environment, time plays a key role in personalized recommendations, because users, 

items, and systems change over time. Time specificity is not as critical when using only historical data in 

a static environment. When recommendations are based on historical co-occurrence, there is no time 

specificity and so one cannot anticipate the changes. An item that is new to the system may start cold, but 

user interest in the item may change and fluctuate with temporal trends such as external events and 

seasonality. The recommender system also changes because feedback loops, where users are influenced 

by the output of the system, cause the data that the system uses to change over time. The feedback loops 

make it difficult to tease apart the cases where a user chooses an item because the item was displayed 

prominently and the cases where a user chooses an item independently. Different components of the 

system may change and thus affect the data that are used by other components. Designing 

experimentation that can handle time and infer causality is a key research area at Netflix (Basilico and 

Raimond, 2017). 

The firm’s intricate process of making predictions and designing interventions 
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As we submitted earlier, the creation of time-specific causal knowledge results from the firm’s process of 

making predictions and designing interventions. As an illustration, we describe the process with how 

Netflix improved its key task of personalized ranking of movies and TV shows with deep learning 

models. AI researchers at Netflix conducted a series of online tests and offline analyses to understand 

why offline performance (when evaluated on held-out historical data) is not reflective of online 

performance (when evaluated in an A/B-test where the recommendations are presented to users) when 

trying deep-learning models (Steck et al., 2021). 

“In the early 2010s, deep learning was taking off in the machine-learning community fueled by 

impressive results on a variety of tasks in different domains including computer vision, speech 

recognition, and natural language processing (NLP). At that time there was a stir in the air within the 

recommender-systems research community: Will the wave of deep learning also wash over 

recommenders to deliver tremendous improvements? As with many others, we at Netflix were intrigued 

by this question and the potential of deep learning to improve our recommendations. While the answer is 

now quite clear that deep learning is useful for recommender systems, the path to understand where deep 

learning is beneficial over existing recommendation approaches was an arduous one. This is evidenced by 

how many years it took for such methods to get traction in the research community.” 

Steck and colleagues observed that, if a deep-learning model is given the wrong problem to solve, 

it will solve it more accurately than less powerful models would. So, a major challenge is to figure out 

how to train on short-term behavior (e.g., clicks or plays) with an objective of optimizing long-term 

behavior (e.g., user satisfaction). Short-term behavior can be quite noisy in the sense that subtle changes 

in the definition of the (short-term) training objective can lead to big changes in the produced 

recommendations. Another challenge is distribution mismatch. “This is in general true whenever machine 

learning models are deployed in the real world, that is, the data which are used to train machine-learning 

models are not reflective of the population for which the model will be used. Covariate shift is a concrete 

example of distribution mismatch in which the distribution of input features is different between the 

training data and the real world. Traditional techniques to fix distribution mismatch like importance 
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sampling have been shown to be less effective with powerful deep-learning models” (Byrd and Lipton 

2019). 

Steck and colleagues also highlighted interventions for fairness and explainability. “When a deep-

learning model (or any machine-learning model) is deployed, we need to be careful of how it may treat 

real-world entities (in the case of Netflix, members and videos for example), and whether there are any 

unintentional biases that cause the model to treat some entities in an unfair way. It is again related to the 

issue of offline–online mismatch as it may not be possible to easily evaluate a model from a fairness 

perspective as we may not have the appropriate offline evaluation data. A simple example is a model 

doing well for the majority of the data and poorly on a minority. We found techniques like LIME 

(Ribeiro, Singh, and Guestrin 2016), SHAP (Lundberg and Lee 2017) and Integrated Gradients 

(Sundararajan, Taly, and Yan 2017) to be particularly helpful in explaining deep-learning models.” 

Factors limiting digital platforms’ rate of growth: Revision and revitalization of strategy theories 

We approach the revision and revitalization of strategy theories by examining the conditions under which 

the firm’s knowledge has external validity. Specifically, we examine user/item/session heterogeneity, 

domain heterogeneity, and system complexity as the three conditions that determine the validity of the 

firm’s experiment results and their applicability in new contexts. We connect these three conditions that 

constrain ML algorithm’s applicability outside the context for which it is trained to the factors limiting 

the time-specific causal knowledge’s applicability across organizational units, market segments, and 

industry sectors. We present in Table 1 three conditions that limit digital platforms’ rate of growth by 

incorporating time specificity of causal knowledge along three dimensions of growth: scale, scope, and 

boundary. Each condition constrains ML algorithm’s applicability outside the context for which it is 

trained. 

[TABLE 1] 

Scale 

For scale, user/item/session heterogeneity limits the applicability of the time-specific causal knowledge as 

digital platforms grow their users, items and user-item interactions. Adding new users, new items, and 
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new sessions of user-item interactions in a domain may change the accuracy and cost of predictions when 

making on-demand personalized recommendations. Each session is composed of multiple user-item 

interactions in a continuous period of time, ranging from several minutes to several hours. Session-based 

recommender systems take each session as the basic input unit. These systems generate more accurate and 

timely recommendations by capturing a user’s short-term preference from her recent sessions and the 

change in preferences from one session to another. 

The time-specific causal knowledge can be used to increase the scale of a digital platform when 

the knowledge can be generalized to additional users, items, and user engagement with items on demand. 

However, the scale of a digital platform is bounded by ML, which is trained with user-item interaction 

data that are time specific (e.g., response to on-demand personalized recommendations). Outside the 

training data, the knowledge has not external validity. Generalization across populations (e.g., differences 

in user demographics) and time (e.g., differences between sessions of user-item interactions) is a 

fundamental problem in causal inference. When heterogeneous users are added, the accuracy of 

predictions decreases and the cost of making predictions increases. 

As a limiting factor of scale growth, user/item/session heterogeneity is intellectually connected to 

the existing strategy theory on the role of knowledge replication in the rate of growing the scale of 

operations. Winter and Szulanski (2001) linked replication to scale-free knowledge, while Knudsen, 

Levinthal, and Winter (2014) explained replication errors when scaling. We build on both papers by 

theorizing the types of errors as the microfoundation in linking replication to AI-based knowledge. 

Whereas Knudsen et al. (2014) highlighted error-prone transmission, or replication, of firm-specific 

knowledge, time specificity was not theorized as a source of error in explaining why the rate of growing 

scale is limited. Our emphasis on time specificity is also intellectually connected to time compression 

diseconomy, which is a central strategy construct. Pacheco-de-Almeida and Zemsky (2007) as well as 

Wibbens (2021) formalized the challenges of time compression diseconomies. Our paper extends this 

central construct by theorizing time specificity as a source of error in the AI setting. Prediction errors—



 15 

bias and variance—were not theorized in the existing literature either, as the traditional industry context 

did not involve prediction technology. 

Scope 

For scope, domain heterogeneity limits the applicability of the time-specific causal knowledge as digital 

platforms grow their domains of application. One domain may complement or conflict with another 

domain when making on-demand personalized recommendations. Recommender systems focusing on a 

single domain tend to suffer problems of data sparsity and item cold-start that make it hard to model user 

preferences accurately and efficiently, because the data are restricted to a small fraction of past 

transactions (Li and Tuzhilin, 2020). By contrast, recommender systems covering multiple domains can 

transfer learning from one domain to another, if a common knowledge structure defines domain 

relatedness and user preferences have symmetrical correlation between source domain and target domain 

for cross-domain learning transfer (Khan et al., 2017; Pan et al., 2010). 

Time specificity may limit the scope of a digital platform when the knowledge cannot be 

generalized to new domains. Continuing with the example of Netflix’s recommender system for the ease 

of exposition, potential new domains may add music and podcast as items for entertainment. Could new 

domains be advertisements, news and infomercials? Could new domains extend beyond digital content 

that is produced by professional studios to include user-generated content? Could new domains venture 

farther into financial products (e.g., loans, investments, insurance policies), physical products (e.g., 

grocery), services (e.g., ride sharing), providers (e.g., personal fitness, healthcare), medical treatments 

(e.g., personalized medicine), driving directions, romantic dates, college applicants, job applicants, etc.? 

Also, time specificity limits scope when the recommender system does not improve prediction 

accuracy or reduce cost by learning from the data that are aggregated across domains. When heterogenous 

domains are added, having knowledge from another domain may not create more value (higher accuracy 

at lower cost of prediction) for time-specific personalized recommendations. Cross-domain learning 

requires a common knowledge structure that defines domain relatedness and user preferences that have 

symmetrical correlation between source domain and target domain. If two users have similar preferences 



 16 

in one domain, their preferences are assumed to be similar in other domains as well (e.g., music, books, 

movies). If the assumption holds, user preferences can be transferred across domain simultaneously. 

Having more than one domain at a time improves the recommendations through a better understanding of 

user preferences and the simultaneity of learning transfer across domains. 

Our emphasis on time specificity contrasts with the existing strategy theory on a firm’s horizontal 

scope by emphasizing that domain data are sources of related diversification. Domain relatedness is 

different from either input relatedness (supply-side factors including raw materials, technological 

component and human resource) or market relatedness (demand-side factors including user profile and 

geography). Existing strategy theory on horizontal scope made a connection to AI, with a focus on 

dominant logic (Prahalad and Bettis, 1986; Bettis and Prahalad, 1995). The research on dominant logic, 

however, was cast during the time when AI was primitive and data were limited. We revive the link 

between AI and horizontal scope, by providing the richness available only nowadays. 

Our emphasis on time specificity also contrasts with the existing strategy theory on vertical 

scope. Digital firms tend to be both narrow in their vertical scope and large in their scale. One reason 

supporting this empirical observation is that, as argued by Giustiziero, Kretschmer, Somaya, and Wu 

(2022), scalability—how the value derived from a firm's resource bundle in a focal activity changes as the 

size of the bundle increases—affects the firm’s opportunity costs of integration. Integration requires 

allocating resources to multiple value-adding activities, rather than using them more intensively to grow 

within the focal activity. When a firm’s resource bundle is scalable, it is more likely to pursue 

“hyperspecialization” and “hyperscaling” simultaneously. It is more likely to outsource value-adding 

activities when they require resource bundles that entail significant opportunity costs. Our paper adds to 

this research by specifying the conditions under which digital platforms, a special type of digital firms, 

are limited in growing both scale and scope. 

Boundary 
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For boundary, system complexity is a condition that determines the validity of the firm’s experiment 

results and their applicability in new contexts. System complexity increases when knowledge components 

interact in interdependent ways. As digital platforms grow the components that are interdependent in the 

system, time specificity in terms of synchronization and inter-operability in the ML ecosystem may limit 

the boundary of a digital platform. For instance, the user interface of a recommender system can be a 

virtual assistant, which is an AI system interacting with users via voice recognition, face recognition and 

automated chatbot. A virtual assistant answers a user’s questions and carries out a user’s request such as 

making shopping lists based on the user's preferences, previous choices, and behavioral patterns. Using 

speech recognition, natural language processing, and robotic process automation, the system interacts 

with users in real-time, makes predictions about user behavior in context, and learns from each 

interaction. When a virtual assistant interconnects a recommender system, the boundary of a digital 

platform encompasses two interdependent knowledge components: the knowledge about how users 

respond to personalized recommendations is combined with the knowledge about how users respond to 

personalized experiences created by a virtual assistant. The personalized recommendations and 

experiences are time specific and need to be synchronized. 

In addition to the interdependence between knowledge components, the interdependence between 

hardware and software in an ML ecosystem also has time specificity. Similar to a kernel in an operating 

system, an ML model requires an ecosystem of software and hardware beyond the model itself. An 

ecosystem of tools, libraries, community resources and professional support for AI workforce, especially 

for the training and deploying of deep neural networks, has emerged for recommender systems. Software 

modules available as cloud-based computing (e.g., inter-operable tools such as Tensorflow and Keras) can 

be combined to create complex systems of neural structures and build composite recommenders.2 A 

hardware infrastructure can also be combined with software modules to accelerate the training and 

deploying of large-scale deep learning recommender systems. For example, NVIDIA Merlin™ is a deep 

 
2 https://www.tensorflow.org/recommenders/examples/basic_retrieval 
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neural network training framework that is used to predict a user's next action within a short time period, 

particularly for anonymous users or when users' interests are contextual and change within a session.3 For 

session-based recommender systems, time specificity, in terms of synchronization and inter-operability, 

imposes a limit on what can be combined for the growth of a digital platform. 

Our emphasis on time specificity in terms of synchronization and inter-operability as a source of 

limit to the firm’s boundary is intellectually connected to the foundational research on system complexity 

(Arrow, 1974; Baldwin and Clark, 2000; Brusoni, Prencipe, and Pavitt, 2001; Sanchez and Mahoney, 

1996; Simon, 1969). While the foundational research partitions system architecture spatially, our paper 

makes the partition temporally. In the foundational research, modularity is the main structural feature of 

system architecture, so the rate of firm growth is limited by how quickly components can be 

interconnected. Building on the foundational research, we submit temporal partition as another way 

modules of a complex system interconnect. Linking organizational complexity and AI is a budding and 

growing literature (e.g., Raj and Seamans, 2019; Shrestha, He, Puranam, and von Krogh, 2020) that we 

are joining. 

In our paper, synchronization and inter-operability highlight the temporal aspect of 

interconnection. The more the firm simultaneously interconnects its AI with software (e.g., developing 

the firm’s AI with the cloud-based Tensorflow) and hardware (e.g., deploying the firm’s AI with neural 

network boosted with specialized graphics-processing-units [GPU]) in the business ecosystem, in which 

the firm partners with software and hardware providers, the higher the rate of growing its AI’s boundary. 

When an ecosystem of software and hardware is available as general-purpose technologies that level the 

playing field, the firm can grow faster than its competitive rivals, who also can partner with the same 

software and hardware providers simultaneously, if the firm generates time-specific AI-based knowledge. 

CONCLUSION 

 
3 https://developer.nvidia.com/nvidia-merlin 
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In this paper, we introduce the concept of time-specific tacitness of AI-based knowledge and theorize how 

the time specificity of causal knowledge enhances our understanding about what factors limit the scale, 

scope, and boundary of the firm. As a limiting factor of scale growth, user/item/session heterogeneity is 

intellectually connected to the existing strategy theory on the roles of knowledge replication and time 

compression diseconomy in the rate of growing the scale of operations. As a limiting factor of scope 

growth, domain heterogeneity is intellectually connected to the existing strategy theory on dominant logic 

for horizontal scope and that on hyperspecialization for vertical scope. As a limiting factor of boundary 

growth, system complexity is intellectually connected to the existing strategy theory on modularity, which 

is the main structural feature of system architecture that defines which components of the software and 

hardware ecosystem are inside versus outside the firm’s boundary. 

The concept that we introduce emerge from our observations of how new technologies (AI and 

digitalization) change the way firms are organized as digital platforms and compete with tacit knowledge. 

These new technologies cause us to re-evaluate existing strategy theory on the limit of firm growth with a 

focus on the scale, scope, and boundary of the firm. The re-evaluation leads to a revision and 

revitalization of theories that encompass central constructs in strategy research: knowledge replication, 

time compression diseconomy, dominant logic, hyperspecialization, and modularity. The time specificity 

of causal knowledge that is inferred with AI is the key in revising and revitalizing these existing theories. 

The revision and revitalization focus on strategic decision-making. By contrast, the existing literature on 

AI in the field of strategic management focuses on the functional aspects of management, featuring 

operations, marketing, talent acquisition, etc. Our focus on strategic decision-making has not only 

theoretical implications, but also managerial implications, where managers can view AI, particularly 

recommender systems, as decision-support systems. Time-specific causal knowledge is central to the 

firm’s strategic decision-making as it informs whether and how to intervene. Managers can decide what 

interventions to make in order to optimize a desired outcome. 

Our central thesis that creating time-specific causal knowledge about how to intervene with AI 

requires firm-specific process of making predictions and designing interventions is connected to three 
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broader bodies of literature. One body of literature is on firm knowledge and capabilities (Kogut and 

Zander, 1992; Nickerson and Zenger, 2004). Our paper extends this body by suggesting why and how 

causal inference might emerge as a type of organizational capability. Causal inference is a scale-free 

capability that has not been addressed in corporate strategy. Another body is the growing literature on the 

strategy of digital firms (Adner, Puranam, and Zhu, 2019; Giustiziero et al., 2022). Our paper extends this 

body by explaining the factoring limiting the scale, scope, and boundary growth of digital firms. The third 

body is on the limit of ML (Athey, 2017; Athey et al., 2020; Pearl, 2019). Our paper extends this body by 

linking fundamental obstacles that limit ML applications as well as the limitations of pure prediction 

methods to the firm’s strategic decision-making. 
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TABLE 1: Factors Limiting Digital Platforms’ Rate of Growth in Scale, Scope, and Boundary 

Factors Limiting Digital 
Platforms’ Rate of Growth in 
Scale, Scope, and Boundary 

Sources of Knowledge 
Limits 

Time Specificity of Causal 
Knowledge 

Scale 
Deepening knowledge within 
domain  

User heterogeneity 
Item heterogeneity 
Session heterogeneity 

Adding new users, new items, and 
new user-item interactions in a 
domain may change the accuracy 
and cost of predictions when making 
on-demand personalized 
recommendations. 

Scope 
Broadening knowledge across 
domains 

Domain heterogeneity One domain may complement or 
conflict with another domain when 
making on-demand personalized 
recommendations. 

Boundary 
Combining knowledge as 
components of a complex 
system 

System complexity 
 

One component of an AI system may 
complement or conflict with another 
component when making on-demand 
personalized recommendations. 

 

 


